

INSTRUCTION & SAFETY MANUAL

SIL 2 Repeater Power Supply
Hart compatible
DIN-Rail Models D1014S, D1014D

Characteristics

General Description: The single and dual channel DIN Rail Repeater Power Supply, D1014S and D1014D is a high integrity analog input interface suitable for applications requiring SIL 2 level (according to IEC61508:2010 Ed. 2) in safety related system for high risk industries. Provides a fully floating do supply for energizing conventional 2 wires 4-20 mA transmitters located in Hazardous Area, and repeats the current in floating circuit to drive a Safe Area load. The circuit allows bi-directional communication signals, for Hart transmitters. Function: 1 or 2 totally independent and isolated channels I.S. analog input for 2 wires loop powered Hart transmitters, provides 3 port isolation (input/output/supply) and current

(source or sink) or voltage output signal. Signalling LED: Power supply indication (green).

Field Configurability: mA (source or sink) or V output signal. Hart Communication Frequency Band: 0.5 to 2.5 KHz within 3 dB. EMC: Fully compliant with CE marking applicable requirements.

Functional Safety Management Certification:

G.M. International is certified by TUV to conform to IEC61508:2010 part 1 clauses 5-6 for safety related systems up to and included SIL3.

Technical Data

Supply: 12-24 Vdc nom (10 to 30 Vdc) reverse polarity protected, ripple within voltage limits ≤ 5 Vpp.

Current consumption @ 24 V: 110 mA for 2 channels D1014D, 55 mA for 1 channel D1014S with 20 mA output typical. Current consumption @ 12 V: 220 mA for 2 channels D1014D, 110 mA for 1 channel D1014S with 20 mA output typical.

Power dissipation: 1.8 W for 2 channels D1014D, 0.9 W for 1 channel D1014S with 24 V supply voltage and 20 mA output typical

Max. power consumption: at 30 V supply voltage and short circuit condition, 3.4 W for 2 channels D1014D, 1.7 W for 1 channel D1014S.

Isolation (Test Voltage): I.S. In/Out 1.5 KV; I.S. In/Supply 1.5 KV; I.S. In/I.S. In 500 V; Out/Supply 500 V; Out/Out 500 V.

Input: 4 to 20 mA (2 wire Tx current limited at ≈ 25 mA).

Transmitter line voltage: ≥ 15.0 V at 20 mA with max. 20 mVrms ripple on 0.5 to 2.5 KHz frequency band.

Output: 4 to 20 mA, on max. 600 Ω load in source mode; V min. 5 V at 0 Ω load V max. 30 V in sink mode, current limited at ≈ 25 mA or 1 to 5 V on internal 250 Ω shunt (or 2 to 10 V on internal 500 Ω shunt on request).

Response time: 20 ms (10 to 90 % step change).

Output ripple: ≤ 20 mVrms on 250 Ω communication load on 0.5 to 2.5 KHz band. Frequency response: 0.5 to 2.5 KHz bidirectional within 3 dB (Hart protocol). **Performance:** Ref. Conditions 24 V supply, 250 Ω load, 23 ± 1 °C ambient temperature.

Calibration accuracy: ≤ ± 0.1 % of full scale. Linearity error: ≤ ± 0.1 % of full scale.

Supply voltage influence: ≤ ± 0.05 % of full scale for a min to max supply change. Load influence: ≤ ± 0.05 % of full scale for a 0 to 100 % load resistance change. Temperature influence: ≤ ± 0.01 % on zero and span for a 1 °C change.

Compatibility:

CE mark compliant, conforms to Directive: 2014/34/EU ATEX, 2014/30/EU EMC, 2014/35/EU LVD, 2011/65/EU RoHS.

Environmental conditions:

Operating: temperature limits -20 to + 60 °C, relative humidity max 95 %.

Storage: temperature limits - 45 to + 80 °C.

Safety Description:

ATEX: II (1)G [Ex ia Ga] IIC, II (1)D [Ex ia Da] IIIC, I (M1) [Ex ia Ma] I; II 3G Ex nA IIC T4 Gc **IECEx / INMETRO:** [Ex ia Ga] IIC, [Ex ia Da] IIIC, [Ex ia Ma] I; Ex nA IIC T4 Gc

UL: AIS / I, II, III / 1 / ABCDEFG, [AEx ia] IIC

C-UL: AIS / I, II, III / 1 / ABCDEFG, [Ex ia] IIC

FM: NI / I / 2 / ABCD / T4, NI / I / 2 / IIC / T4, AIS / I, II, III / 1 / ABCDEFG, AEx [ia] IIC FM-C: NI / I / 2 / ABCD / T4, NI / I / 2 / IIC / T4, AIS / I, II, III / 1 / ABCDEFG, Ex [ia] IIC

EAC-EX: 2Ex nA [ia Ga] IIC T4 Gc X, [Ex ia Da] IIIC X, [Ex ia Ma] I X

UKR TR n. 898: 2ExnAialICT4 X, Exial X

associated apparatus and non-sparking electrical equipment.

Uo/Voc = 25.2 V, lo/lsc = 93 mA, Po/Po = 585 mW at terminals 14-15, 10-11.

Um = 250 Vrms, -20 °C \leq Ta \leq 60 °C.

Approvals:

DMT 01 ATEX E 042 X conforms to EN60079-0, EN60079-11, EN60079-26.

IECEx BVS 07.0027X conforms to IEC60079-0, IEC60079-11, IEC60079-26.

IMQ 09 ATEX 013 X conforms to EN60079-0, EN60079-15. IECEx IMQ 13.0011X conforms to IEC60079-0, IEC60079-15.

INMETRO DNV 13.0108 X conforms to ABNT NBR IEC60079-0, ABNT NBR IEC60079-11, ABNT NBR IEC60079-15, ABNT NBR IEC60079-26, ABNT NBR IEC 61241-11.

UL & C-UL E222308 conforms to UL913, UL 60079-0, UL60079-11, UL60079-15 ANSI/ISA 12.12.01 for UL and

CSA-C22.2 No.157-92, CSA-E60079-0, CSA-E60079-11, CSA-C22.2 No. 213 and CSA-E60079-15 for C-UL. FM & FM-C No. 3024643, 3029921C, conforms to Class 3600, 3611, 3810, ANSI/ISA 12.12.02, ANSI/ISA 60079-0, ANSI/ISA 60079-11,

C22.2 No.142, C22.2 No.157, C22.2 No.213, E60079-0, E60079-11, E60079-15

GOST R 12.2.007.0-75, R 51330.0-99, R 51330.10-99 GOST 12.2.007.0,22782.0,22782.5

TÜV Certificate No. C-IS-236198-03, SIL 2 conforms to IEC61508:2010 Ed.2.

TÜV Certificate No. C-IS-236198-09, SIL 3 Functional Safety Certificate conforms to IEC61508:2010 Ed.2, for Management of Functional Safety.

DNV No.A-13625 and KR No.MIL20769-EL001 Certificates for maritime applications

Mounting:

T35 DIN Rail according to EN50022.

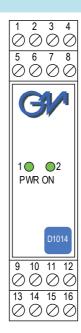
Weight: about 170 g D1014D, 115 g D1014S.

Connection: by polarized plug-in disconnect screw terminal blocks to accommodate terminations up to 2.5 mm².

Location: Safe Area/Non Hazardous Locations or Zone 2, Group IIC T4, Class I, Division 2, Groups A, B, C, D Temperature Code T4 and Class I, Zone 2, Group IIC, IIB, IIA T4 installation.

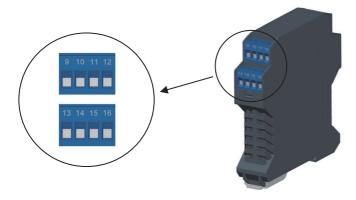
Protection class: IP 20.

Dimensions: Width 22.5 mm, Depth 99 mm, Height 114.5 mm.

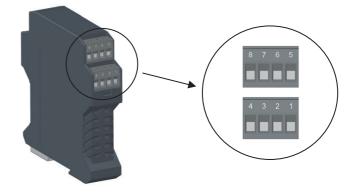

Ordering information

Model:	D1014		
1 channel 2 channels		S D	
Power Bus en	closure		/B

Power Bus and DIN-Rail accessories DIN rail anchor MCHP065 Terminal block male MOR017


DIN rail stopper MOR016 Terminal block female MOR022

Front Panel and Features


- SIL 2 according to IEC 61508:2010 Ed. 2 for Tproof = 9 / 10 years (≤10% / >10 % of total SIF).
- PFDavg (1 year) 1.05 E-04, SFF 87.01%.
- SIL 3 Systematic capability.
- 2 fully independent channels.
- Input from Zone 0 (Zone 20), Division 1, installation in Zone 2, Division 2.
- 4-20 mA Input, Output Signal.
- Hart compatible.
- Input and Output short circuit proof.
- · High Accuracy.
- Three port isolation, Input/Output/Supply.
- EMC Compatibility to EN61000-6-2, EN61000-6-4, EN61326-1
- In-field programmability by DIP Switch.
- ATEX, IECEx, UL & C-UL, FM & FM-C, INMETRO, EAC-EX, UKR TR n. 898, TÜV Certifications.
- TÜV Functional Safety Certification.
- Type Approval Certificate DNV and KR for maritime applications.
- High Reliability, SMD components.
- High Density, two channels per unit.
- Simplified installation using standard DIN Rail and plug-in terminal blocks.
- 250 Vrms (Um) max. voltage allowed to the instruments associated with the barrier.

Terminal block connections

HAZARDOUS AREA

- 9 Not used
- + Input Ch 2 for 2 wire Transmitters
- Input Ch 2 for 2 wire Transmitters
- 12 Not used
- 13 Not used
- + Input Ch 1 for 2 wire Transmitters
- 15 Input Ch 1 for 2 wire Transmitters
- 16 Not used

SAFE AREA

- + Output Ch 1 for Current Source mode or + Output Ch 1 for Voltage Source mode or + Output Ch 1 for Current Sink mode
- Output Ch 1 for Current Source mode or Output Ch 1 for Voltage Source mode or Output Ch 1 for Current Sink mode
- 4 Ch 1 Power Supply 12-24 Vdc
- 4 Ch 1 Power Supply 12-24 Vdc
- + Output Ch 2 for Current Source mode or + Output Ch 2 for Voltage Source mode or + Output Ch 2 for Current Sink mode
- 6 Output Ch 2 for Current Source mode or Output Ch 2 for Voltage Source mode or Output Ch 2 for Current Sink mode
- 7 + Ch 2 Power Supply 12-24 Vdc
- 8 Ch 2 Power Supply 12-24 Vdc

Parameters Table

In the system safety analysis, always check the Hazardous Area/Hazardous Locations devices to conform with the related system documentation, if the device is Intrinsically Safe check its suitability for the Hazardous Area/Hazardous Locations and gas group encountered and that its maximum allowable voltage, current, power (Ui/Vmax, Ii/Imax, Pi/Pi) are not exceeded by the safety parameters (Uo/Voc, Io/Isc, Po/Po) of the D1014 series Associated Apparatus connected to it. Also consider the maximum operating temperature of the field device, check that added connecting cable and field device capacitance and inductance do not exceed the limits (Co/Ca, Lo/La, Lo/Ro) given in the Associated Apparatus parameters for the effective gas group. See parameters on enclosure side and the ones indicated in the table below:

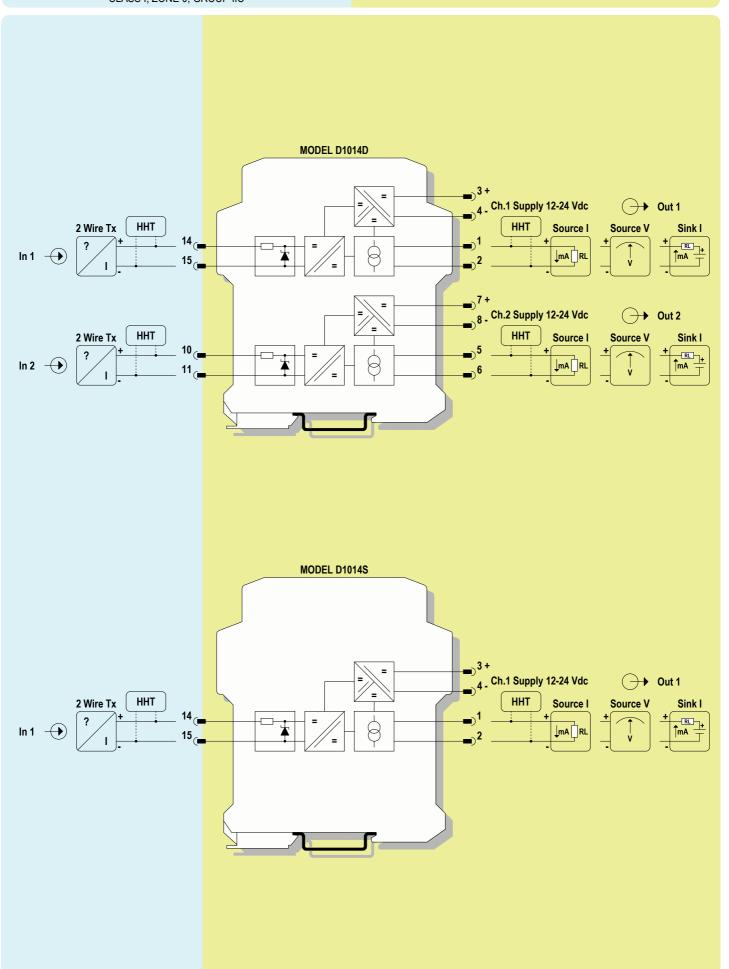
D101	D1014 Terminals D1014 Associated Apparatus Parameters		Must be	Hazardous Area/ Hazardous Locations Device Parameters	
Ch1	14 - 15 10 - 11	Uo / Voc = 25.2	V	≤	Ui / Vmax
Ch1	14 - 15 10 - 11	lo / lsc = 93 m <i>i</i>	Ą	≤	li/ lmax
Ch1 Ch2	14 - 15 10 - 11	Po / Po = 585 m	Po / Po = 585 mW		Pi / Pi
D1014 Terminals		D1014 Associated Apparatus Parameters		Must be	Hazardous Area/ Hazardous Locations Device + Cable Parameters
Ch1	14 - 15 10 - 11	Co / Ca = 105 nF Co / Ca = 819 nF Co / Ca = 2.899 µF Co / Ca = 4.15 µF	IIC (A, B) IIB (C) IIA (D)	2	Ci / Ci device + C cable
Ch1	14 - 15	Co / Ca = 819 nF Lo / La = 4.1 mH Lo / La = 16.4 mH	IIIC IIC (A, B) IIB (C)		
Ch2	10 - 11	Lo / La = 32.8 mH Lo / La = 54 mH Lo / La = 16.4 mH	IIA (D) I IIIC	2	Li / Li device + L cable
Ch1	14 - 15	Lo / Ro = $60.7 \mu H/\Omega$ Lo / Ro = $242.9 \mu H/\Omega$ Lo / Ro = $485.8 \mu H/\Omega$ Lo / Ro = $797.1 \mu H/\Omega$	IIC (A, B) IIB (C) IIA (D)	≥	Li / Ri device and L cable / R cable
Ch2	10 - 11	Lo / Ro = 242.9 μ H/ Ω	IIIC		

NOTE for USA and Canada:

IIC equal to Gas Groups A, B, C, D, E, F and G

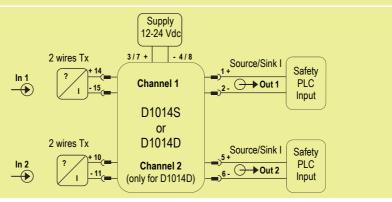
IIB equal to Gas Groups C, D, E, F and G

IIA equal to Gas Groups D, E, F and G


For installations in which both the Ci and Li of the Intrinsically Safe apparatus exceed 1 % of the Co and Lo parameters of the Associated Apparatus (excluding the cable), then 50 % of Co and Lo parameters are applicable and shall not be exceeded (50 % of the Co and Lo become the limits which must include the cable such that Ci device + C cable \leq 50 % of Co and Li device + L cable \leq 50 % of Lo).

If the cable parameters are unknown, the following value may be used: Capacitance 60pF per foot (180pF per meter), Inductance 0.20µH per foot (0.60µH per meter). The Intrinsic Safety Entity Concept allows the interconnection of Intrinsically Safe devices approved with entity parameters not specifically examined in combination as a system when the above conditions are respected.

For Division 1 and Zone 0 installations, the configuration of Intrinsically Safe Equipment must be FM approved under Entity Concept (or third party approved); for Division 2 installations, the configuration of Intrinsically Safe Equipment must be FM approved under non-incendive field wiring or Entity Concept (or third party approved).


HAZARDOUS AREA ZONE 0 (ZONE 20) GROUP IIC, HAZARDOUS LOCATIONS CLASS I, DIVISION 1, GROUPS A, B, C, D, CLASS II, DIVISION 1, GROUPS E, F, G, CLASS III, DIVISION 1, CLASS I, ZONE 0, GROUP IIC

SAFE AREA, ZONE 2 GROUP IIC T4, NON HAZARDOUS LOCATIONS, CLASS I, DIVISION 2, GROUPS A, B, C, D T-Code T4, CLASS I, ZONE 2, GROUP IIC T4

Functional Safety Manual and Application

Application for D1014S or D1014D, with passive input (2 wires Tx)

Description:

For this application, enable 4 - 20 mA source or sink mode for ch. 1 or ch. 2, setting the internal dip-switches in the following mode (see page 9-10 for more information):

Dip-switch position (D1014S)	1	2	3	4
4 - 20 mA Source mode	ON	ON	OFF	OFF
4 - 20 mA Sink mode	OFF	OFF	OFF	ON

Dip-switch position (D1014D)	1	2	3	4	5	6	7	8
4 - 20 mA Source mode ch. 1	ON	ON	OFF	OFF	ON	ON	OFF	OFF
4 - 20 mA Sink mode ch. 1	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON

The module is powered by connecting 12-24 Vdc power supply to Pins 3 (+ positive) - 4 (- negative) for Ch. 1 and Pins 7 (+ positive) - 8 (- negative) for Ch. 2.

The green LEDs are lit in presence of each power supply line.

The passive input signals from 2 wires Tx are applied to Pins 14-15 (In 1 - Ch.1) and Pins 10-11 (In 2 - Ch.2).

The source or sink output currents are applied to Pins 1-2 (for Channel 1) and Pins 5-6 (for Channel 2).

Safety Function and Failure behavior:

D1014 is considered to be operating in Low Demand mode, as a Type A module, having Hardware Fault Tolerance (HFT) = 0.

The failure behaviour of the D1014 S and D1014D modules (when the output current range is 4 to 20 mA) is described by the following definitions:

- □ Fail-Safe State: it is defined as the output going to Fail Low or Fail High, considering that the Safety logic solver can convert the Low or High failures (dangerous detected failures) to the Fail-Safe state.
- ☐ Fail Safe: failure mode that causes the module / (sub)system to go to the defined fail-safe state without a demand from the process.
- □ Fail Dangerous: failure mode that does not respond to a demand from the process (i.e. being unable to go to the defined Fail-Safe state) or deviates the output current by more than 5% (0.8 mA) of full span.
- □ Fail High: failure mode that causes the output signal to go above the maximum output current (> 20 mA). Assuming that the application program in the Safety logic solver is configured to detect High failures and does not automatically trip on these failures, this failure mode has been classified as a dangerous detected (DD) failure.
- □ Fail Low: failure mode that causes the output signal to go below the minimum output current (< 4 mA). Assuming that the application program in the Safety logic solver is configured to detect Low failures and does not automatically trip on these failures, this failure mode has been classified as a dangerous detected (DD) failure.
- □ Fail "No Effect": failure mode of a component that plays a part in implementing the Safety Function but that is neither a safe failure nor a dangerous failure. When calculating the SFF, this failure mode is not taken into account.
- □ Fail "Not part": failure mode of a component which is not part of the safety function but part of the circuit diagram and is listed for completeness. When calculating the SFF this failure mode is not taken into account.

The 2 channels of D1014D module could be used to increase the hardware fault tolerance, needed for a higher SIL of a certain Safety Function, as they are they are completely independent each other, not containing common components. In fact, the analysis results got for D1014S (single channel) are also valid for each channel of D1014D (double channel). Failure rate date: taken from Siemens Standard SN29500.

Failure rate table:

Failure category	Failure rates (FIT)
λ _{dd} = Total Dangerous Detected failures	158.64
λ _{du} = Total Dangerous Undetected failures	23.69
λ _{sd} = Total Safe Detected failures	0.00
λ_{su} = Total Safe Undetected failures	0.00
$\lambda_{\text{tot safe}}$ = Total Failure Rate (Safety Function) = λ_{dd} + λ_{du} + λ_{sd} + λ_{su}	182.33
MTBF (safety function, single channel) = $(1 / \lambda_{tot safe})$ + MTTR (8 hours)	626 years
λ _{no effect} = "No effect" failures	165.77
λ _{not part} = "Not Part" failures	15.90
$\lambda_{\text{tot device}}$ = Total Failure Rate (Device) = $\lambda_{\text{tot safe}} + \lambda_{\text{no effect}} + \lambda_{\text{not part}}$	364.00
MTBF (device, single channel) = $(1 / \lambda_{tot device}) + MTTR (8 hours)$	313 years

Failure rates table according to IEC 61508:2010 Ed.2:

λ_{sd}	λ_{su}	λ_{dd}	λ_{du}	SFF	DCs	DC _D
0.00 FIT	0.00 FIT	158.64 FIT	23.69 FIT	87.01%	0%	87.01%

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes ≤10% of total SIF dangerous failures:

T[Proof] = 1 year	T[Proof] = 9 years
PFDavg = 1.05 F-04 - Valid for SII.2	PFDavg = 9 47 F-04 - Valid for SII 2

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%),), with determination of SIL supposing module contributes >10% of total SIF dangerous failures:

T[Proof] = 10 years
PFDavg = 1.05 E-03 - Valid for SIL 2

Systematic capability SIL 3.

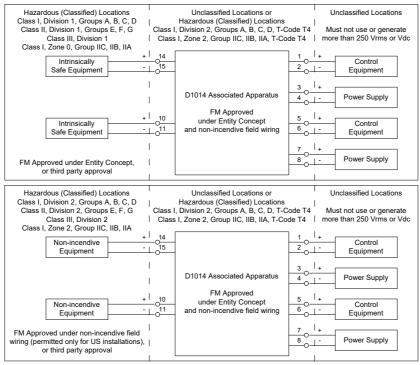
Testing procedure at T-proof

The proof test must be performed to reveal dangerous faults which cannot be otherwise detected. This means that it is necessary to specify how dangerous undetected faults, which have been noted during the FMEDA analysis, can be revealed during the proof test.

The **Proof Test 1** consists of the following steps:

Steps	Action
1	Bypass the Safety-related PLC or take any other appropriate action to avoid a false trip.
2	Send a HART command to the repeater to go to the High (> 20 mA) alarm current output and verify that the analog current reaches that value. This test is for voltage compliance problems, such as a low loop power supply voltage or an increased wiring resistance, and for other possible failures.
3	Send a HART command to the repeater to go to the Low (< 4 mA) alarm current output and verify that the analog current reaches that value. This tests is for possible quiescent current related failures.
4	Restore the loop to full operation.
5	Remove the bypass from the Safety-related PLC or restore normal operation.

This test will reveal approximately 50% of possible Dangerous Undetected failures in the repeater.


The Proof Test 2 consists of the following steps:

Steps	Action
1	Bypass the Safety-related PLC or take any other appropriate action to avoid a false trip.
2	Perform steps 2 and 3 of the Proof Test 1 .
3	Perform a two-point calibration (i.e. down and full scale) of the connected transmitter and verify that the current output value remains within the specified values. This requires that the transmitter has already been tested without the repeater and does not contain any dangerous undetected failures.
4	Restore the loop to full operation.
5	Remove the bypass from the safety-related PLC or restore normal operation.

This test will reveal approximately 99 % of possible Dangerous Undetected failures in the repeater.

Warning

D1014 series are isolated Intrinsically Safe Associated Apparatus installed into standard EN50022 T35 DIN Rail located in Safe Area/Non Hazardous Locations or Zone 2, Group IIC, Temperature Classification T4, Class I, Division 2, Groups A, B, C, D, Temperature Code T4 and Class I, Zone 2, Group IIC, IIB, IIA Temperature Code T4 Hazardous Area/Hazardous Locations (according to EN/IEC60079-15, FM Class No. 3611, CSA-C22.2 No. 213-M1987, CSA-E60079-15) within the specified operating temperature limits Tamb -20 to +60 °C, and connected to equipment with a maximum limit for AC power supply Um of 250 Vrms.

Non-incendive field wiring is not recognized by the Canadian Electrical Code, installation is permitted in the US only.

For installation of the unit in a Class I, Division 2 or Class I, Zone 2 location, the wiring between the control equipment and the D1014 associated apparatus shall be accomplished via conduit connections or another acceptable Division 2, Zone 2 wiring method according to the NEC and the CEC.

Not to be connected to control equipment that uses or generates more than 250 Vrms or Vdc with respect to earth ground.

D1014 series must be installed, operated and maintained only by qualified personnel, in accordance to the relevant national/international installation standards (e.g. IEC/EN60079-14 Electrical apparatus for explosive gas atmospheres - Part 14: Electrical installations in hazardous areas (other than mines), BS 5345 Pt4, VDE 165, ANSI/ISA RP12.06.01 Installation of Intrinsically Safe System for Hazardous (Classified) Locations, National Electrical Code NEC ANSI/NFPA 70 Section 504 and 505, Canadian Electrical Code CEC) following the established installation rules, particular care shall be given to segregation and clear identification of I.S. conductors from non I.S. ones.

De-energize power source (turn off power supply voltage) before plug or unplug the terminal blocks when installed in Hazardous Area/Hazardous Locations or unless area is known to be nonhazardous.

Warning: substitution of components may impair Intrinsic Safety and suitability for Division 2, Zone 2.

Explosion Hazard: to prevent ignition of flammable or combustible atmospheres, disconnect power before servicing or unless area is known to be nonhazardous. Failure to properly installation or use of the equipment may risk to damage the unit or severe personal injury.

The unit cannot be repaired by the end user and must be returned to the manufacturer or his authorized representative. Any unauthorized modification must be avoided.

Operation

D1014 provides fully floating DC supply for energizing 2 wire 4-20 mA transmitters located in Hazardous Area/Hazardous Locations, and repeats and converts the current to a 4-20 mA or 1-5 V floating output signal to drive a Safe Area load. The circuit allows bi-directional communication signal for Hart transmitters. A "POWER ON" green led lits when input power is present.

Installation

D1014 series are repeater power supply hart compatible housed in a plastic enclosure suitable for installation on T35 DIN Rail according to EN50022.

D1014 unit can be mounted with any orientation over the entire ambient temperature range, see section "Installation in Cabinet" and "Installation of Electronic Equipments in Cabinet" Instruction Manual D1000 series for detailed instructions.

Electrical connection of conductors up to 2.5 mm² are accommodated by polarized plug-in removable screw terminal blocks which can be plugged in/out into a powered unit without suffering or causing any damage (for Zone 2 or Division 2 installations check the area to be nonhazardous before servicing).

The wiring cables have to be proportionate in base to the current and the length of the cable.

On the section "Function Diagram" and enclosure side a block diagram identifies all connections and configuration DIP switches.

Identify the number of channels of the specific card (e.g. D1014S is a single channel model and D1014D is a dual channel model), the function and location of each connection terminal using the wiring diagram on the corresponding section, as an example:

Connect 12-24 Vdc power supply positive at terminal "3" and negative at terminal "4" for channel 1.

For Model D1014D connect 12-24 Vdc power supply positive at terminal "7" and negative at terminal "8" for channel 2.

For Model D1014S connect positive output of channel 1 at terminal "1" and negative output at "2".

For Model D1014D in addition to channel 1 connections above, connect positive output of channel 2 at terminal "5" and negative output at "6".

For Model D1014S connect the wires of input transmitter at terminal "14" for positive and "15" for negative.

For Model D1014D in addition to channel 1 connections above, connect terminal "10" for positive and "11" for negative on channel 2.

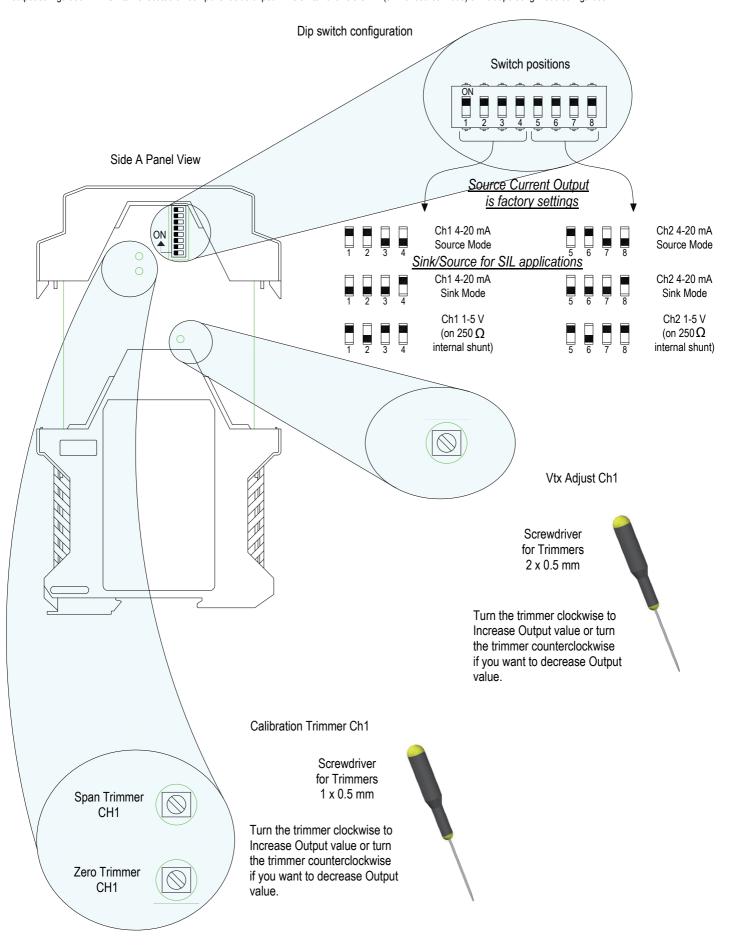
Note: terminal "3" and "4" are internally connected to terminal "7" and "8" for factory default. To supply the unit with different supply voltage or different power supply, open the wiring between the terminals (see "Different power Supply" section); consult factory for detailed information. When using Power Bus enclosure the power supply is the same for all channel.

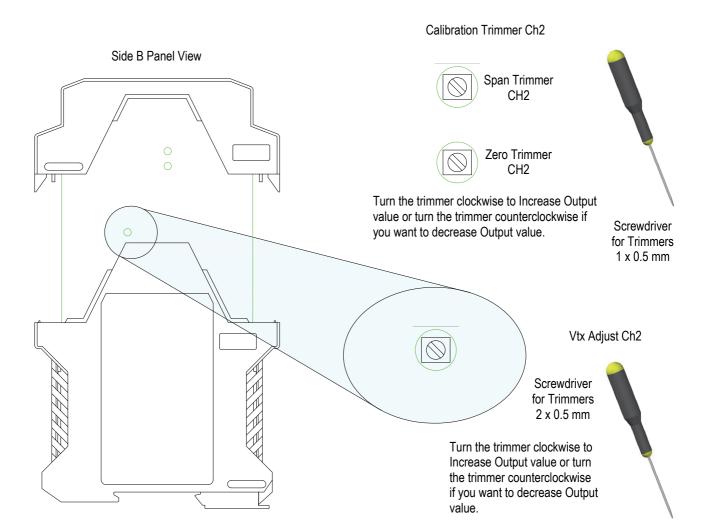
Intrinsically Safe conductors must be identified and segregated from non I.S. and wired in accordance to the relevant national/international installation standards (e.g. EN/IEC60079-14 Electrical apparatus for explosive gas atmospheres - Part 14: Electrical installations in hazardous areas (other than mines), BS 5345 Pt4, VDE 165, ANSI/ISA RP12.06.01 Installation of Intrinsically Safe System for Hazardous (Classified) Locations, National Electrical Code NEC ANSI/INFPA 70 Section 504 and 505, Canadian Electrical Code CEC), make sure that conductors are well isolated from each other and do not produce any unintentional connection.

The enclosure provides, according to EN60529, an IP20 minimum degree of mechanical protection (or similar to NEMA Standard 250 type 1) for indoor installation, outdoor installation requires an additional enclosure with higher degree of protection (i.e. IP54 to IP65 or NEMA type 12-13) consistent with the effective operating environment of the specific installation. Units must be protected against dirt, dust, extreme mechanical (e.g. vibration, impact and shock) and thermal stress, and casual contacts.

If enclosure needs to be cleaned use only a cloth lightly moistened by a mixture of detergent in water.

Electrostatic Hazard: to avoid electrostatic hazard, the enclosure of D1014 must be cleaned only with a damp or antistatic cloth.

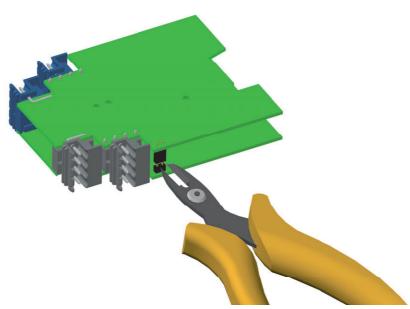

Any penetration of cleaning liquid must be avoided to prevent damage to the unit. Any unauthorized card modification must be avoided.


Start-up

Before powering the unit check that all wires are properly connected, particularly supply conductors and their polarity, input and output wires, also check that Intrinsically Safe conductors and cable trays are segregated (no direct contacts with other non I.S. conductors) and identified either by color coding, preferably blue, or by marking. Check conductors for exposed wires that could touch each other causing dangerous unwanted shorts. Turn on power, the "power on" green led must be lit, for 2 wire transmitter connection the supply voltage on each channel must be ≥ 15 V, output signal should be corresponding to the input from the transmitter. If possible change the transmitter output and check the corresponding Safe Area output.

Configuration

An output configuration DIP Switch is located on component side of pcb. This switch allows the mA (sink or source mode) or Volt operating mode configuration.

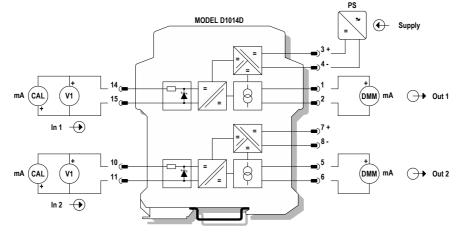


Dip switch Configuration Summary Table

Channel	1			2	2			
Output Operation	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
4-20 mA Source Mode (for SIL application)	ON	ON	OFF	OFF	ON	ON	OFF	OFF
4-20 mA Sink Mode (for SIL application)	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON
1-5 V (on 250 Ω internal shunt)	ON	OFF	ON	ON	ON	OFF	ON	ON

Different power supply

Terminal "3" and terminal "4" are internally connected to terminal "7" and terminal "8" for factory default. To supply the unit with different supply voltage or different power supply, open the wiring between the terminals (see the following figure); consult factory for detailed information. When using Power Bus enclosure the power supply is the same for all channels there for don't separate the terminals because one channel remains switched off.


Cut both pins of the connector to open the wiring between the terminals, using a wire cutter

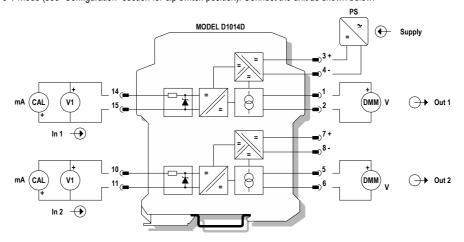
Calibration instruction and Troubleshooting

In case a calibration check or readjustment is necessary the following equipment is required:

Equipment Required	Instrument	Identification
Adjustable Power Supply Range 0-35 V Resolution 0.1 V, Accuracy 1% Output Capability 200 mA	Agilent E3611A	PS
Current Meter range 20 mA, Resolution 1 µA Accuracy 0.01% or Voltage Meter Range 10 V, Resolution 1 mV Accuracy 0.01%	Agilent 34410A	DMM
Voltage Meter range 30 V, Resolution 1 mV Accuracy 0.05 %	Fluke	V1
Current Calibrator range 20 mA, Resolution 1 µA Accuracy 0.01 %	Yokogawa 7651	CAL

- (1) For current output please follow step 1
- Check that dip switch in the unit is in 4-20 mA Source Mode (see "Configuration" section for dip switch position). Connect the unit as shown below:

- Set power supply (PS) at 24.0 V at terminals 3 (+) and 4 (-), the calibrator (CAL) in the function "mA" 20 mA range at terminals 14 (-) and 15 (+), the multimeter (V1) for the reading in DC supply 30 V range at terminals 14 (+) and 15 (-), the multimeter (DMM) for the reading in DC supply 20 mA range at terminals 1 (+) and 2 (-).
- Execute the next test to verify D1014S unit channel or execute it twice to verified both D1014D unit channels.


If the power ON Leds are off, check supply voltage, polarity and wiring.

- Set calibrator (CAL) at 20.000 mA and verify that the transmitter voltage, simulated by calibrator (CAL) and read by multimeter (V1), is correspondent at 15.30 V ± 0.1 V.

 If the transmitter voltage is not correct, regulate it by turning the Vtx trimmer of the unit (see "Configuration" section) until reading the correct value.
- Set calibrator (CAL) at 4.000 mA and verify that the output current, read by multimeter (DMM), is correspondent with a maximum deviation presented in the section "Technical Data".
- Set calibrator (CAL) at 20.000 mA and verify that the output current, read by multimeter (DMM), is correspondent with a maximum deviation presented in the section "Technical Data".

If the maximum deviation is exceeded, repeat the board calibration and proceed in the following way:

- Set the calibrator (CAL) at 20.000 mA and regulate the current, read by multimeter (DMM), by turning the span trimmer of the unit (see "Configuration" section) until reading 20.000 mA ± 5 μA value.
- Set the calibrator (CAL) at 4.000 mA and regulate the current, read by multimeter (DMM), by turning the zero trimmer of the unit (see "Configuration" section) until reading 4.000 mA ± 5 µA value.
- Repeat the last two steps to verify that the span trimmer's movement has not significantly modified the value of zero (a dragging of 1/5 exists when moving span and zero values.
- To execute a linearity test: set the calibrator (CAL) at 4.000, 8.000, 12.000, 16.000, 20.000 mA and verify current output is correspondent with a maximum deviation presented in the section "Technical Data".
- (2) For voltage output please follow step 2
- Check that dip switch in the unit is in 1-5 V mode (see "Configuration" section for dip switch position). Connect the unit as shown below:

- Set multimeter (DMM) for the reading in DC supply, 10 V range.
- Set calibrator (CAL) at 20.000 mA and power supply (PS) at 9.0 V; verify that output voltage (20 mA current on the 250 Ω shunt resistance) read by multimeter (DMM) is 5.000 V ± 10 mV.